数学说课稿

时间:2025-11-01 21:10:12
数学说课稿(汇编15篇)

数学说课稿(汇编15篇)

作为一位兢兢业业的人民教师,时常需要用到说课稿,写说课稿能有效帮助我们总结和提升讲课技巧。那么什么样的说课稿才是好的呢?以下是小编精心整理的数学说课稿,希望对大家有所帮助。

数学说课稿1

一。教材分析

1.教材的地位和作用

这节课是在同学们已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。二次函数是初中阶段研究的最后一个具体的函数,也是最重要的,在历年来的中考题中占有较大比例。同时,二次函数和以前学过的一元二次方程、一元二次不等式有着密切的联系。进一步学习二次函数将为它们的解法提供新的方法和途径,并使同学们更为深刻的理解"数形结合"的重要思想。而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。所以这节课在整个教材中具有承上启下的重要作用。

2.教学目标和要求

(1)知识与技能:使同学们理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围。

(2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高同学们解决问题的能力。

(3)情感、态度与价值观:通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展同学们的数学思维,增强学好数学的愿望与信心。

3.教学重点:对二次函数概念的理解。

4.教学难点:由实际问题确定函数解析式和确定自变量的取值范围。

二。教法学法设计

1.从创设情境入手,通过知识再现,孕伏教学过程。

2.从同学们活动出发,通过以旧引新,顺势教学过程。

3.利用探索、研究手段,通过思维深入,领悟教学过程。

三。教学过程

(一)复习提问

1.什么叫函数?我们之前学过了那些函数?

(一次函数,正比例函数,反比例函数)

2.它们的形式是怎样的?

(y=kx+b,k≠0;y=kx ,k≠0;y=k/x , k≠0)

3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k≠0的条件? k值对函数性质有什么影响?

【设计意图】复习这些问题是为了帮助同学们弄清自变量、函数、常量等概念,加深对函数定义的理解。强调k≠0的条件,以备与二次函数中的a进行比较。

(二)引入新课

函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。看下面三个例子中两个变量之间存在怎样的关系。(电脑演示)

例1圆的半径是r(cm)时,面积s (cm?)与半径之间的关系是什么?

解:s=πr?(r>0)

例2设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。如果存款额是100元,那么请问两年后的本息和y(元)与x之间的关系是什么(不考虑利息税)?

解: y=100(1+x)?

=100(x?+2x+1)

= 100x?+200x+100(0

教师提问:以上两个例子所列出的函数与一次函数有何相同点与不同点?

【设计意图】通过具体事例,让同学们列出关系式,启发同学们观察,思考,归纳出二次函数与一次函数的联系: (1)函数解析式均为整式(这表明这种函数与一次函数有共同的特征)。(2)自变量的最高次数是2(这与一次函数不同)。

(三)讲解新课

以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。

二次函数的定义:形如y=ax2+bx+c (a≠0,a, b, c为常数) 的函数叫做二次函数。

巩固对二次函数概念的理解:

1.强调"形如",即由形来定义函数名称。二次函数即y 是关于x的二次多项式(关于的x代数式一定要是整式)。

2.在 y=ax2+bx+c 中自变量是x ,它的取值范围是一切实数。但在实际问题中,自变量的取值范围是使实际问题有意义的值。(如例1中要求r>0)

3.为什么二次函数定义中要求a≠0 ?

(若a=0,ax2+bx+c就不是关于x的二次多项式了)

4.在例2中,二次函数y=100x2+200x+100中, a=100, b=200, c=100.

5.b和c是否可以为零?

由例1可知,b和c均可为零。

若b=0,则y=ax2+c;

若c=0,则y=ax2+bx;

若b=c=0,则y=ax2.

注明:以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c是二次函数的一般形式。

【设计意图】这里强调对二次函数概念的理解,有助于同学们更好地理解,掌握其特征,为接下来的判断二次函数做好铺垫。

判断:下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a、b、c.

(1)y=3(x-1)?+1

(2)s=3-2t?

(3)y=(x+3)?- x?

(4) s=10πr?

(5) y=2?+2x

(6)y=x4+2x2+1(可指出y是关于x2的二次函数)

【设计意图】理论学习完二次函数的概念后,让同学们在实践中感悟什么样的函数是二次函数,将理论知识应用到实践操作中。

(四)巩固练习

1.已知一个直角三角形的两条直角边长的和是10cm.

(1)当它的一条直角边的长为4.5cm时,求这个直角三角形的面积;

(2)设这个直角三角形的面积为Scm2,其中一条直角边为xcm,求S关于x的函数关系式。

【设计意图】此题由具体数据逐步过渡到用字母表示关系式,让同学们经历由具体到抽象的过程,从而降低同学们学习的难度。

2.已知正方体的棱长为xcm,它的表面积为Scm2,体积为Vcm3.

(1)分别写出S与x,V与x之间的函数关系式子;

(2)这两个函数中,那个是x的二次函数?

【设计意图】简单的实际问题,同学们会很容易列出函数关系式,也很容易分辨出哪个是二次函数。通过简单题目的练习,让同学们体验到成功的欢愉,激发他们学习数学的兴趣,建立学好数学的信心。

3.设圆柱的高为h(cm)是常量,底面半径为rcm,底面周长为Ccm,圆柱的体积为Vcm3

(1)分别写出C关于r;V关于r的函数关系式;……此处隐藏26953个字……生学习的过程评价。我采用及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对____是否有一个完整的集训,并进行及时的调整和补充。 以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。 谢谢!

数学说课稿15

教材说明

这是一节小学六年级的数学课。

学生分析

学生整体上思维敏捷,在新授课上总是表现出较浓的兴趣,课堂反应与接受较快。

本节课将要教学的“成数与折扣”,大多数同学在日常生活中通过新闻媒体、交往、购物等多少都有所接触、了解。但学生的这种认识还只是凭借生活经验产生的感性认识。如打折,学生都能想到是便宜了,比原价少了,但问其所以然,能解释清楚的并不多。所以对成数、折扣知识概念学生并未真正理解。另外,学生很少会将这种生活中的商业折扣、农业成数与数学、与课本上的百分数数学知识相联系,欠缺知识间沟通互化的意识。所以,需要教师规范、指导形成系统的概念,联系生活实践来展开教学。

教学目标

1、明确成数、折扣的含义。

2、能熟练地把成数、折扣写成分数、百分数。

3、正确解答有关成数、折扣应用题。

4、学会合理、灵活地选择方法,锻炼运用数学知识解决实际问题的能力。

课前准备

电脑课件一份,学生准备计算器。

教学流程

一、联系主活,导入新课。

师:我们刚刚度过一个有意义的寒假。愉快的寒假结束了,一年一度的新春佳节过去了,就在春节过后,各商家又会搞些什么样的促销活动呢?学生汇报调查情况。

二、在生活情境中,讲授新知。

1、教学折扣的含义,会把折扣改写成百分数。

(1)谈话,探学情。

师:刚才大家调查到的打折是商家常用的手段,是一个商业用语,那么你所调查到的打折是什么意思呢?比如说打“七折”,你怎么理解?学生回答。

师:你们举的例子都很好,老师也搜集到某商场打七折的售价标签。

(电脑显示)

①大衣,原价:1000元,现价:700元。

②围巾,原价:100元,现价:70元。

③铅笔盒,原价:10元,现价:?

④橡皮,原价:1元,现价:?

师:动脑筋想一想。如果原价是10元的铅笔盒,打七折,猜一猜现价会是多少?如果原价是1元的橡皮,打七折,现价又是多少?

学生回答。

师:仔细观察,商品在打七折时,原价与现价有一个什么样的关系?带着这样的问题,拿出你手中调查到的打七折的标签,可以利用计算器,也可以借助课本,四人小组一起试着找到答案。

(2)讨论,找规律。

学生动手操作、计算,并在计算或讨论中发现规律。

师:说说你们组寻找的方法。

学生的方法有:利用计算器,原价乘以70%恰好是标签的售价;或现价除以原价大约都是70%;或查书,等等。

(3)归纳,得定义。

师:通过小组讨论,谁能说说打七折是什么意思?打八折是什么意思?打九折呢?打八五折呢?

学生回答。

师:概括地讲,打折是什么意思?如果用分母是十的分数,该怎样表示?

师小结:“几折”是就是十分之几,也就是百分之几十。

(4)练习。

①四折是十分之,改写成百分数是。

②六折是十分之,改写成百分数是。

③七五折是十分之,改写成百分数是。

④九二折是十分之,改写成百分数是。

2、运用折扣含义解决实际问题。

例1:商店出售录音机,每台原价430元,现价打九折出售,比原价便宜多少元?

(1)出示提纲。

①打九折怎么理解?

②是以谁为单位“1”?

③可以改写成一道怎样的应用题?

④要求便宜多少元?也就是要求什么?

(2)学生试做,讲评。

(3)练习,做一做。

3、教学成数的含义,把成数改写成百

分数。

(1)新闻,探学情。

(电脑显示:一则新闻《毛阿敏八成不能来晋演出》)

师:看了这则新闻,你想到什么?是肯定不能来吗?从哪儿看出来的?你认为八成表示有多大的把握?

学生回答。

师:大家说得都很好。如果把肯定来晋看作100%的话,八成就相当于80%。这种说法除了日常生活之外,在工农业生产中也经常用到。

(2)自学,得意义。

打开书自学课本相关内容。

学生汇报情况,概括成数的含义。

(3)练习。

师:就要单元测试了,能不能用含有成数的句子表达你对这次测试有多大的信心?

①四成是十分之,改写成百分数。

②二成五是十分之,改写成百分数。

③七成五是十分之,改写成百分数。

④八成七是十分之,改写成百分数。

4、运用成数含义解决实际问题。

例2:小华家承包了一块菜田,前年收白菜41、6吨,去年比前年多收了二成五,去年收白菜多少吨?

学生试做、汇报、讲评。

三、巩固练习、应用所学。

1、判断。

(1)成数表示两数之间的倍数关系。

(2)五成八改写成百分数是5、8%。

(3)商品打折扣都是以原商品价格为单位“1”,即标准量。

(4)某县今年蔬菜比去年增产四成,这里的四成是把去年看作单位“1”。

(5)一件上衣现在打八折出售,就是说比原价降低10%。

2、做课本中的相关练习题。

四、全课总结。

今天你又知道了什么知识?

板书:

折扣

例1:430×(1-90%)

=430×0、1

=43(元)

答:比原价便宜43元。

成数:

例2:41、6×(1+25%)

=41、6×1、25

=52(吨)

答:去年收白菜52吨。

评析

这是非实验年级教师尝试用新理念教老教材的一节课。

本节课的教学注重紧密联系学生的生活实际,利用学生在日常生活中触手可及的商场购物、新闻消息等,创设教学氛围,让学生既体会到数学源于生活,又认识到所学数学可应用于生活。同时,教师引导学生大胆地猜测,积极地讨论,主动地探索,勇敢地尝试,将教学活动建立在学生已有的知识经验基础之上,所以课堂气氛活跃,学生学得起劲,学得主动。但在成数、折扣应用题的教学上,个别学困生还是有理解较慢的情况。由此看来,教师应在讲授新课前,适当增加对百分数应用题的复习。

《数学说课稿(汇编15篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式